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Background. The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible
in vaccinated and unvaccinated populations. The dynamics that govern its establishment and propensity toward fixation (reaching
100% frequency in the SARS-CoV-2 population) in communities remain unknown. Here, we describe the dynamics of Omicron at
3 institutions of higher education (IHEs) in the greater Boston area.

Methods. We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the
rapid dominance of Omicron following its introduction into 3 IHEs with asymptomatic surveillance programs.

Results. We show that the establishment of Omicron at IHEs precedes that of the state and region and that the time to fixation is
shorter at IHEs (9.5–12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among
university employees resembles that of students, with a 2- to 3-day delay. Finally, we compare cycle threshold values in
Omicron vs Delta variant cases on college campuses and identify lower viral loads among college affiliates who harbor Omicron
infections.

Conclusions. We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5–
12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the
transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic
surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.
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In the final days of 2021, the global severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) case count surpassed
1 million cases per day [1], with the surge due, at least in part,
to the Omicron variant of concern (B.1.1.529). In the United
States, coronavirus disease 2019 (COVID-19) case counts
reached record highs (3–5 times the peak of prior waves),
with the estimated percentage of cases due to Omicron rapidly
increasing from ,1% of cases (4 December 2021) to .95% of
cases (1 January 2022) [2]. Omicron transmission is possible
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among both vaccinated and unvaccinated individuals [3], al-
though the relative rates of transmission from each remain un-
clear. Evidence suggests that Omicron can partially evade
immunity acquired from prior COVID-19 infection [4] and
from a 2-dose messenger RNA (mRNA) vaccine regimen [5],
though a third dose improves Omicron neutralization efficien-
cy, at least in the short term [6].

To mitigate the risks of congregate living, institutes of higher
education (IHEs) use a combination of vaccination require-
ments [7, 8], high-frequency testing [8, 9], and behavioral inter-
ventions such as masking and social distancing to control viral
spread. An analysis [10] suggests that in the setting of masking
and frequent testing, case counts are not correlated with dorm
occupancy or in-person instruction; this is consistent with the
evidence that cases have been predominantly acquired in off-
campus settings [11]. Moreover, detailed genomic analyses of
an IHE and its nearby communities suggested that transmis-
sion dynamics within the IHE did not result in spread to the
greater community [12]. Thus, many IHEs successfully con-
trolled the spread of COVID-19 through the Delta surge.
However, in December 2021, COVID-19 case counts rose rap-
idly both in college communities [13] and in New England
(NE) as a whole, with viral genomic sequencing confirming
Omicron as the cause. While some institutions responded by
converting to distance learning or requiring booster shots
[14–18], the feasibility of maintaining residential college life
without another spike in cases was in question.

Here, we capitalize on asymptomatic testing programs at
3 Boston-based IHEs, Boston University (BU), Harvard
University (HU), and Northeastern University (NU), to docu-
ment the rapid takeover of the Omicron variant, reaching near-
fixation within the span of 9.5–12.5 days despite lower viral
loads, on average, than the previously dominant Delta
(B.1.627.2) variant.

METHODS

Patient Samples and Ethics Statement

We gathered de-identified sample information from 3 institu-
tions with campus testing programs [11] (Table 1).We received
the following information for every positive test collected be-
tween 2 December 2021 and 21 December 2021: sample collec-
tion date, cycle threshold (Ct) for 1 or more genes, and variant
designation. From BU, we also received affiliate status (student
vs employee, where employees include faculty, staff, and con-
tractual employees). For HU, SARS-CoV-2 samples were col-
lected from consented individuals under the Harvard
Longwood Campus institutional review board (IRB) 20-1877
and covered by an exempt determination (EX-7295) at the
Broad Institute. For BU, SARS-CoV-2 samples and data access
were covered by an exemption determination under BU IRB

6122E. The use of these data in this study was evaluated and ap-
proved by NU under data use agreement 20-1481.

Experimental Methods

Across universities, individuals self-collected anterior nares
specimens, which were analyzed using reverse
transcription quantitative polymerase chain reaction (RT-
qPCR). At BU, a 2-target SARS-CoV-2 assay with RNase P con-
trol was performed [11, 22]. At HU, the Quaeris SARS-CoV-2
assay was performed [23]. At NU, the Thermo Fisher Scientific
Applied Biosystems TaqPath COVID-19 Combo Kit was used
[24]. Variant status was assessed using amplicon-based viral se-
quencing, as previously described [25] (BU); mCARMEN [26],
a CRISPR-based diagnostic platform that identifies unique
combinations of Spike gene mutations (HU); a variant-specific
PCR assay (HU; Supplementary Table 1); or S-gene target fail-
ure [27] (SGTF; NU; Supplementary Methods).

Data Curation

We downloaded Massachusetts (MA) and NE case count data
from the Centers for Disease Control and Prevention
[28] and sequence data from the Global Initiative on Sharing
All Influenza Data (GISAID) [29–31]. We removed 152 of
1758 samples (8.6%) from the universities (50 from BU and
102 from HU) with missing variant information (ie, due to as-
say technical limitations) from all subsequent analyses. We re-
moved 53 of the 22 211 (0.2%) MA sequences from GISAID
that had a variant classification other than Delta or Omicron.
We removed 22 211 of the 30 796 (72.1%) NE sequences from
GISAID [29–31] that were in MA (ie, NE curve fits do not in-
clude MA) and 29 of the remaining 8585 (0.3%) sequences that
had a variant classification other than Delta or Omicron. We
removed 20 gene-specific data points with Ct .40 or Ct ,5
due to possible technical errors. For Ct comparisons, samples
with missing data due to failed amplification of a specific
gene were removed solely from the analysis of that gene. For
the per-affiliation analyses, we removed 6 of 524 (1.1%) BU cas-
es with missing student or employee designations.

Logistic Regression and Inference

We fit logistic models on binary variant calls as a function of the
date, estimating the proportion of cases that were Omicron
over time for each university individually (with data from
2 December–21 December), for MA and NE (with data from
1 December–1 January) and for BU by affiliation (student vs
employee; with data from 2 December–21 December). We doc-
umented 95% confidence intervals (CIs) for our model’s pa-
rameters, the overdispersion ratio, and McFadden’s
pseudo-R2 (Supplementary Methods).
We estimated the date at which theOmicron fraction reached

10%, 50%, and 90%, hereafter defined as O10, O50, and O90. We
used the notation ΔOx, A–B=Ox, Population A – Ox, Population B to
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represent the difference in the date at which the Omicron frac-
tion reached x% between 2 populations, and we used the nota-
tionΔO90–10=O90−O10 to represent the number of days it took
a particular population’s Omicron fraction to rise from 10%
to 90%.

We derived point estimates for Ox by inverting our regres-
sion model, such that:

Ox =
logit(

x
100

)− B0

B1
,

where B0 is the intercept and B1 is the slope. To generate a stan-
dard error for Ox, we used the delta method [32, 33] with the
transformation function Ox(x) (as above) and with the mean
and covariance of x determined by the coefficients and covari-
ance matrix of our regression model, respectively.

We generated 95% CIs for Ox and compared Ox values be-
tween populations by approximating the distribution of Ox

via the family of Student t distributions (Supplementary
Methods).

Case Counts

For MA and NE, we summed confirmed and probable daily
cases into the metric total daily cases. We noted weekly varia-
tion in case reporting (ie, no MA cases were reported on the
weekends; Supplementary Figure 1) and thus calculated 7-day
rolling averages. We noted smaller-scale variation in case count
reporting at IHEs and calculated 3-day rolling averages. To ap-
proximate the number of MA cases that were Delta or
Omicron, we used our logistic regression model to estimate
the Omicron fraction for each day in 1 December–15
January. We scaled case counts by population sizes provided
in Table 1 (IHEs) or in the 2020 census (MA) [34].

Ct Value Comparisons

We compared Ct values for Delta and Omicron cases per insti-
tution and per target, as each university had a unique testing
protocol. We compared Ct values for the N1 (BU, HU), N2
(BU, NU), and ORF1ab (NU) genes. We also compared Ct val-
ues at BU per affiliation. We used the Wilcoxon rank sum test
with Benjamini-Hochberg correction [35] to assess the rela-
tionship between SARS-CoV-2 variant and Ct.

RESULTS

There was a rapid increase in both daily case count and the
Omicron fraction at IHEs in December 2021. In early
December, Delta was circulating across MA and at IHEs,
though case rates were higher per capita in the community out-
side of IHEs (Figure 1A). The Omicron surge at IHEs in
mid-December was accompanied by a more modest rise in
case counts (ie, slope of cases vs time) in MA and NE during
the same period (note: testing rates were lower in these popu-
lations), followed by a striking regional surge in late December
(Figure 1A, Supplementary Figure 1). A total of 1606
SARS-CoV-2 cases were identified across the 3 institutions
(BU, HU, and NU) between 2 December (0% Omicron) and
21 December (91% Omicron). The fraction of cases that were
Omicron across the IHEs, MA, and NE displayed a classic
sigmoid-shaped curve consistent with logistic growth
(Figure 1B, Supplementary Table 2), moving toward
Omicron fixation. Delta diminished in frequency as well as to-
tal case count. By 5 January, the Harvard University Clinical
Laboratory found that 100% of 159 samples tested were
Omicron.
Omicron was established earlier and rose to fixation faster at

IHEs than in MA as a whole (Figure 1B). We noted that MA

Table 1. Institutions Studied

Institute of
Higher Education

Individuals in
Testing
Programa

Testing
Frequencyb

(1/week)

Vaccination Rateb (1
Johnson & Johnson or 2
Messenger RNA)

Variant Designation
Method

Cycle
Threshold
Genec

Cases (2–21
December 2021)

Finals
Week (2021)

Boston University 43 904 1 92.5% (employees,
affiliates)
97.9% (students)

Viral sequencing N1
N2
RNase P

524 14–18
December

Harvard
University

38 434 3 (live on
campus)
2 (live off
campus,
not vaccinated)
1 (live off
campus,
vaccinated)

97% (employees)
98% (students)

mCARMEN
variant-specific
polymerase chain
reaction

N1 635 9–18
December

Northeastern
University

30 602 1 97.7% (employees)
99.6% (students)

S-gene target
failure

N1
ORF1ab
S
MS2

447 10–18
December

aIndividuals in the testing programs include undergraduate and graduate students, faculty, and staff.
bTesting frequencies and vaccination rates were collected from publicly available university dashboards [19–21].
cN1, N2, ORF1ab, and S are severe acute respiratory syndrome coronavirus 2 genes; RNase P is a human gene (control); MS2 is a bacteriophage (control).
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and NE (without MA) had visually indistinguishable curves
and fitted parameters with highly overlapping CIs
(Supplementary Table 2). Thus, we compared the timing of
Omicron’s trajectory between IHEs and MA, with results gen-
eralizable to NE. To compare the timing of Omicron establish-
ment across populations, we generated a metric (O10; see the
Methods section) that estimates the date range at which 10%
of the cases were Omicron. O10 occurred significantly earlier
at IHEs than in MA, by an average of 2.4 days (BU), 3.8 days
(NU), and 9.2 days (HU) (Table 2, Supplementary Table 3).
To compare the duration at which Omicron fixated across pop-
ulations, we generated the metric ΔO90–10, the duration (in
days) during which Omicron rose from 10% to 90% of cases
(see the Methods section). ΔO90–10 was 9.5 at HU (95% CI,
9.2–9.8), 10.8 at BU (95% CI, 10.4–11.1), 12.5 at NU (95%
CI, 12.1–12.9), and 14.8 in MA (95% CI, 14.8–14.9), indicating

that the trajectory to Omicron fixation occurred more rapidly
at IHEs (Table 2). Taken together, these data point toward
Omicron’s earlier establishment and faster rise to fixation at
IHEs compared with MA or NE.
Next, we found that BU employees displayed Omicron dy-

namics similar to those of BU students, with a 2–3 day delay
in onset. We found no significant association between affilia-
tion (student vs employee) and variant (Figure 2A; Fisher exact
test, P= .12, odds ratio= 0.7 with 95% CI, .5–1.1), with em-
ployees accounting for 28.7% (74 Delta, 73 Omicron) of cases
(1.13 per 100 employees) and students accounting for 71.3%
(157 Delta, 214 Omicron; Figure 2B) of cases (1.20 per 100 stu-
dents). We again used O10 (see the Methods section) to com-
pare the timing of Omicron establishment between
populations. O10 occurred significantly earlier among BU stu-
dents relative to BU employees (by an average of 2.8 days)
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Figure 1. A, Cases per 100 000 across the IHEs and MA, stratified by variant. Plotted values are rolling averages over a 3-day (IHEs) or 7-day (MA) window to account for
weekly variation in case reporting. Omicron and Delta variant proportions in MA were inferred from Global Initiative on Sharing All Influenza Data (GISAID) data (see the
Methods section). The last day of fall semester finals occurred on 18 December (dashed line). Data from 3 December–20 December (IHEs) and 4 December 4–12 January (MA).
B, Proportion of cases that were Omicron from 2 December–21 December (IHEs) and 1 December–1 January (MA, NE). Data were modeled using logistic regression. MA,
Massachusetts data from GISAID. NE without MA, New England data (excluding the MA data) from GISAID. Abbreviations: BU, Boston University; HU, Harvard University;
IHE, institutes of higher education; MA, Massachusetts; NE, New England; NU, Northeastern University.
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and MA (by an average of 3.0 days; Figure 2C, Table 3,
Supplementary Table 5). We compared ΔO90–10 as a metric
of time to fixation, which was 8.5 among BU employees (95%
CI, 7.9–9.1) and 9.5 among BU students (95% CI, 9.1–9.9;
Table 3). ΔO90–10 was more comparable between BU students
and employees than BU was to other IHEs (Table 2) and mark-
edly differed in MA (14.8; 95% CI, 14.8–14.9), indicating that
employees’ trajectories resembled those of students (Table 3).
Taken together, we found that employees and students had par-
allel Omicron trajectories with a lag time between 2 and 3 days.

Finally, we compared Ct values across variants and found
that Omicron samples did not have lower Ct values (ie, higher
viral loads) than Delta samples, suggesting that increased
Omicron transmission is not driven by higher viral loads
(Figure 3). At BU andHU, N1-gene Ct values were significantly
higher, by an average of 2.2 (P= .0002) and 3.1 (P, .0001), re-
spectively, in Omicron vs Delta samples (Figure 3A, 3B;
Supplementary Table 6). This trend was recapitulated for
N2-gene Ct values at BU (Omicron Ct values an average of
2.0 higher, P= .0007; Figure 3C, Supplementary Table 6). At
NU, neither the N2- nor the ORF1ab-gene Ct values differed
by variant (Figure 3D, Supplementary Figure 2,
Supplementary Table 6). We found no difference in BU’s Ct
values by affiliation status (ie, student vs employee; N1 gene,
P= .91; N2 gene, P= .81), and we found that Ct-by-variant
trends identified at BU are conserved when the data are condi-
tioned on an affiliation (Supplementary Figure 3,
Supplementary Table 7). In summary, we found that, despite
differences in testing cadence, testing platform, and demo-
graphics among IHEs, Omicron viral Ct values were always
higher than or indistinguishable from Delta Ct values.

DISCUSSION

Here, we document Omicron’s swift spread through
Boston-based IHEs in December 2021, which led to unprece-
dented increases in case counts. Though the IHEs and the ur-
ban environment in which they are located were experiencing
Delta transmission at the time of Omicron introduction,
Omicron rapidly became the dominant variant. Over an 9- to

13-day period, variant proportions converted from .90%
Delta to .90% Omicron. Importantly, the rapid increase in
Omicron case counts was identified in highly vaccinated popu-
lations in which Omicron’s viral load, as inferred from anterior
nares diagnostic Ct, was comparable to or lower than that of
Delta. This is consistent with other reports that used throat
or oropharyngeal swabs [36, 37], suggesting that the difference
in viral loads is not specific to the anterior nares. This highlights
that Omicron’s fitness is neither driven by a higher viral load
nor reliant on an immunologically naive population.
Though the date of establishment differed at the 3 IHEs, the

dynamics of Omicron takeover were strikingly similar. The
rapid rise in the Omicron fraction was offset by 1–4 days be-
tween universities, though we cannot rule out differences in
testing cadence as the cause of the lag. The dynamics of
Omicron dominance were similar across campuses despite dif-
ferences in testing programs, on-campus vs off-campus hous-
ing, and variant designation technologies. Additionally, the
time to fixation for BU employees was more comparable to
that of BU students than that of the state, supporting a trans-
mission mode that is independent of the residential nature of
college campuses.
In contrast to the early establishment and dominance in the

IHEs in our study, Omicron’s procession toward fixation in
MAoccurredmore slowly.While the difference in introduction
time could be accounted for by earlier detection of cases in
asymptomatic testing programs, the differences in slope and
time to fixation cannot be explained by this factor. These dy-
namics are consistent with overdispersion in transmission, in
which clusters of cases are responsible for the majority of
spread, and the early stages of establishment within a commu-
nity are stochastic and scale with the number of introductions
[38, 39]. Overdispersion in SARS-CoV-2 transmission is well
documented [38, 40–42], and our work is consistent with the
continuation of this phenomenon with Omicron. IHEs are
not siloed in their interaction networks; however, the propor-
tion of interactions within an IHE’s network is greater than
the proportion of interactions that exit into the community;
as a result, clusters of transmission are readily detected via ro-
bust screening. The ability of Omicron to rapidly spread

Table 2. University-Specific Point Estimates and 95% Confidence Intervals for Ox and for ΔO90–10

Institution O10 O10 95% CI O50 O50 95% CI O90 O90 95% CI
ΔO90–10

(Days)
ΔO90–10 95%
CI (Days)

Harvard University 4 December 2–6 December 10 December 9–11 December 16 December 15–17 December 9.5 (9.2–9.8)

Northeastern University 8 December 7–10 December 14 December 13–14 December 19 December 18–20 December 12.5 (12.1–12.9)

Boston University 10 December 8–11 December 14 December 14–15 December 19 December 18–20 December 10.8 (10.4–11.1)

Massachusetts 12 December 12 December 19 December 19–20 December 27 December 27 December 14.8 (14.8–14.9)

Ox, the date at which the Omicron fraction equals x percent. ΔO90–10, the duration of time that it takes the Omicron fraction to rise from 10% to 90%. CIs were generated via the Student t
distribution, with estimation of the standard errors via the delta method (see the Methods section).

Abbreviation: CI, confidence interval.
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through a vaccinated population means that even communities
that escape the initial peak of Omicron in the United States re-
quire continued monitoring. For example, rural communities
may experience late introductions of Omicron andmay not no-
tice its arrival until a significant proportion of the population
has become infected. This is of particular concern in areas
with low vaccination rates, where a rapid rise in case counts
can overwhelm healthcare systems.

There are technical limitations to the generalizability of this
study. SGTF, caused by the deletion of amino acids 69–70, was

one method we used for variant designation. While SGTF oc-
curs in multiple SARS-CoV-2 variants, the Delta variant, which
lacks this deletion, was the predominant circulating variant be-
fore Omicron’s arrival. Thus, SGTF was sensitive and specific
(94.6% and 99.5%, respectively, inferred from GISAID data
[29–31]) for Omicron in MA during the study period.
Moreover, while it is possible that differences in viral loads
are confounded by differences in timing of viral incubation
or clearance, longitudinal sampling of infected individuals sug-
gests that Omicron samples have lower peak viral loads than

Figure 2. A, Total number of cases at Boston University (BU) stratified by variant and stacked from 2 December–21 December. Gray, Delta; red, Omicron. B, Total number of
cases at BU stratified by affiliation status and stacked from 2 December–21 December. Light green, employees; green, students. C, Proportion of cases that were Omicron
from 2 December–21 December (BU students and employees) and 1 December 1–1 January (MA). Data were modeled using logistic regression. Massachusetts data from
Global Initiative on Sharing All Influenza Data. Abbreviations: MA, Massachusetts; NE, New England; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Delta samples [36]. Finally, there are multiple potential models
for the relationship between student and employee dynamics,
including student–employee transmissions and transmissions
that cycle between students, the community, and employees.
However, we lack the viral genomic sequencing, contact trac-
ing, and community testing data necessary to distinguish these
possibilities.

Moreover, IHEs differ from MA in social structure and de-
mographics, which may play a role in Omicron dynamics.

Though universities include individuals from different com-
munities, the age distribution, residential life, and extracurric-
ular activities could influence Omicron dynamics.
Furthermore, the degree to which potential superspreader
events could be important for the initial seeding of Omicron
and its continued spread is not captured here. It is possible
that the spread of Omicron in non-IHEs may be slower if the
structure of the social network differs [43], resulting in fewer
opportunities for clustered transmission. We cannot separate

Table 3. Affiliation-Specific Point Estimates and 95% Confidence Intervals for Ox and for ΔO90–10

Affiliation O10 O10 95% CI O50 O50 95% CI O90 O90 95% CI
ΔO90-10

(days)
ΔO90-10 95%
CI (days)

Boston University employees 12 December 10–14 December 16 December 15–17 December 20 December 19–22 December 8.5 (7.9–9.1)

Boston University students 9 December 7–10 December 14 December 13–14 December 18 December 17–20 December 9.5 (9.1–9.9)

Massachusetts 12 December 12 December 19 December 19–20 December 27 December 27 December 14.8 (14.8–14.9)
aOx, the date at which the Omicron fraction equals x percent. ΔO90–10, the duration of time that it takes the Omicron fraction to rise from 10% to 90%. CIs were generated via the Student t
distribution, with estimation of the standard errors via the delta method (see the Methods section).

Abbreviation: CI, confidence interval.
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Figure 3. N1 cycle threshold for Delta vs Omicron cases at BU (A) and HU (B). N2 cycle threshold for Delta vs Omicron cases at BU (C ) and NU (D). Gray, Delta; red, Omicron.
The first, second, and third quartiles are within the box, with the median line bolded. The whisker length is 1.5 times the interquartile range (IQR), unless the furthest point is
less than 1.5*(IQR) from the quartile. Outliers are displayed as points. P values via the Wilcoxon rank sum test and corrected via the Benjamini-Hochberg method (across the 4
comparisons in Figure 3 and the 1 comparison in Supplementary Figure 2). Abbreviations: BU, Boston University; HU, Harvard University; NU, Northeastern University.
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possible sociobehavioral factors, such as an increase in indoor
gatherings prior to the start of final examinations or in antici-
pation of the winter holidays, from properties intrinsic to the
virus that may affect overdispersion. Finally, lower vaccination
rates in MA may contribute to the relative fitness of Delta vs
Omicron, and testing inMAmay be biased if symptomatic test-
ing occurs more frequently with Delta than with Omicron.

What can we learn from the spread of Omicron through uni-
versities that could help us mitigate future waves of
SARS-CoV-2 or other pathogens? First, sites that have charac-
teristics like IHEs can be informative early detection sites. We
note 2 of many reasons. First, IHEs include individuals from a
variety of backgrounds who intermix at the university and in
the larger community, and IHEs have implemented university-
wide asymptomatic screening programs. Screening programs
like these can catch and categorize infections well before trends
are noted in the larger community and have the potential to
forecast testing needs and hospital admissions. Second, it is ex-
tremely difficult to stop the spread of a highly transmissible vi-
rus once it has become established in a community. BU, HU,
and NU controlled the spread of previous variants of
SARS-CoV-2 via a combination of high-cadence testing, isola-
tion of positive individuals, contract tracing, quarantining of
close contacts, social distancing, masking, vaccination require-
ments, and ventilation improvements. These measures were
not sufficient to stop the spread of Omicron, and both BU
and HU mitigated further spread via remote learning during
the January term. This emphasizes the need for continued sur-
veillance programs to rapidly identify and mitigate outbreaks
before they become pandemics.
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